

The under-baseboard layout.

ruit. As in the "Eagle Five," however, the negative side of the s.g. valve filaments are not earthed, except through the rheostat, it was not considered worth while to earth "F—" of the three remaining valves by means of direct connection to the screen. If, however, the constructor desires to do this, all that is necessary is to take wires from "F—" of the detector, 1st, and 2nd audio valve holders, to the bolts which hold the valve holders in place. The "F—" negative lead in the battery cable would then, of course, have to be connected to the screening by means of some convenient nut on the underside of the baseboard.

The question of the earthing of one side of the de-coupling condensers appears to be a question rather difficult to decide. In the case of the "Eagle Five" it has been found quite safe to run leads to the nearest points on the screening system, but in other receivers we have built it was found necessary from the point of view of stability to take the connections straight to the negative filament terminal the valve concerned. It is undoubtedly in the tuned circuit, however, that it is most important to use discretion in employing screen returns. In general it is a wise rule not to use such returns at all, but it is often possible to use them

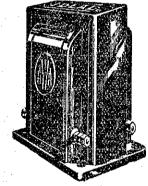
The question of the earthing of one to some limited extent without resultde of the de-coupling condensers aping harm.

The Batteries.

A WORD about the "A," "B," and "C" batteries. The valves recommended for use in the detector and audio stages are:—Detector, an R.C.C. valve, type A630; 1st audio, a valve of the A600 type; and 2nd audio, a small power valve of type B609. The bias required for these valves is not more than 9 volts, so we have been able to mount the small bias battery under the baseboard. If valves taking a larger plate current than those mentioned are used, however, a larger bias battery,

to give correct bias values, should be used.

If possible a six volts accumulator of generous capacity should be used for the "A" supply. As an alternative, however, eight 1½ volt dry cells connected in series parallel will be found to give quite satisfactory results.


Regarding the "B" supply. Only

Regarding the "B" supply. Only heavy duty batteries should be used. Two 45-volts blocks will be found to give satisfactory results, but for best results at least three should be used. Of course, a suitable "B" eliminator is ideal.

Operating the Set.

WE will now assume that the wiring is completed and the set is ready for the initial try-out. First of all connect up the "A" battery only, turn on the filament switch, and rotate the rheostat. The screen-grid valve filaments should light up brightly, or glow a dull red according to the position of the rheostat. If this does not happen, then the mistake in the filament wiring should be immediately located and rectified before proceeding further. No glow will be seen from the last three valves, however, and their filament circuits should be tested in the manner outlined in the article on the "Night Owl Three," on page 29 of last week's issue.

If the constructor is doubtful of his wiring capabilities, both screen-grid valves should be removed while the "B" voltage is applied to the holders to determine whether it has accidentally been connected across the filament circuit or not. In any case, however, the circuit should be carefully re-checked before tests are carried out. Incidentally, if the speaker is not connected up, there will be no plate voltage on

ALL BRITISH COMPONENTS For the "Eagle Five" Circuit

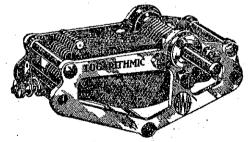
The famous Marconi Screen-Grid Valve Type S.625 for inclusion in the special circuit described in this week's "Radio Record" can now be obtained at a remarkably low figure from all Radio Dealers.

For best results in this special circuit as well as all other circuits use only AWA Ideal Transformers, AWA Logarithmic Condensers and AWA Valve Sockets.

THE A.W.A. VALVE SOCKET

High-grade genuine moulded Bakelite Insulation. UX and UY types.

The A.W.A. IDEAL TRANSFORMER


is available in three ratios: 2—1, 3½—1 and 5—1. They are enclosed in an attractive bronze duco-finished shield, the average weight being 1 pound 4½ ounces. The overall measurements are: base, 2 3-8 inches by 2 inches, and height 3 3-8 inches.

The Ideal Transformer has been designed to give distortionless reproduction over the broadcast frequencies, and includes ample iron and copper combined with high-grade insulation, thus ensuring efficient performance under all normal conditions. The terminals are mounted low down to simplify wiring and each is clearly indicated with its correct designation.

Above Goods Obtainable at all High-grade Radio Stores.

P.O. BOX 830, WELLINGTON.

The A.W.A. LOGARITHMIC CONDENSER

is manufactured in four capacities: .0005 mfd. (23 plates). .00035 mfd. (17 plates), .00025 mfd. (13 plates), .0001 mfd. (7 plates), and is so designed that it follows a true logarithmic scale throughout. They incorporate an absolute minimum of insulating material, and the metal frame has been reduced as far as practical, thereby ensuring low loss, especially on short waves.

They are designed on the centraline principle which, combined with their logarithmic (square law) characteristic, ensures selectivity in tuning. The hollow spindle makes provision for clockwise and anti-clockwise movement, together with gang operation if required. The entire Condenser is silver-plated, giving it a neat and attractive appearance.