the conventional variable condenser symbol is shown between the aerial and the coil.

3. How do you detect the detector?

A.: Usually if you tap the detector you can get a ring in the speaker. Other valves in the set will also give a ring, but the detector is the most pronounced. Furthermore in the lead to the grid of the detector valve is a grid leak and con-It is usually preceded by a coil and followed by a transformer.

S.W. SUPER (Taranaki): The valve of the resistance is really not important. 100,000 ohms will be quite sufficient, although 500,000 ohms would do equally well. 500,000 chms would make a good volume control used in the manner you suggest. It is really pre-ferable to vary the voltage on both the s.g. valves, in order to control the volume.

GRID (Whangarei).—Yes, our specifications were slightly confused; 2100 was the maximum, that is, 1050 on either side of the rectifier. This will allow a slightly bigger margin than would the 850 specified. As, however, if you use half-wave rectifications you will need only 1050 turns, which will leave a big margin.

STALLOY (Thames).—Using a stalloy

core, 3 x 3, what number of turns
per volt must I use on the transformer to be connected with the 230-volt 50-cycle
mains?

A.: You will require one turn per volt.

A.: You will require one turn per volt. The transformer will be 95 per cent. efficient.

2. Where could I get an uninsulated transformer steel?

A.: Try the National Electric Engineering Company, Wellington.
3. The shell and core pattern transformers are usually considered to be formers are us the most efficient.

STEP-UP (Greymouth).—Your

 $\mathbf{V}^{\mathtt{ELOX}}$ as you desire.

M. (Miramar).—All you can do is to M. (Miramar).—All you can do is to keep experimenting with different numbers of turns. We tried out a very large number, and those we published give the best results. If this is not the case with you, you can only do as we did, try various adjustments.

H. G.T. (Wellington).—Does the mutual conductance of the s.g. and pentode valves vary as the impedance?

The drop through the bulb passing 2 amps. is about 10 volts. Consequently you will require 16 volts. A better plan would be to make provision for 20 volts, and use a resistance to regulate the charging rate.

H. G.T. (Wellington).—Does the mutual conductance of the s.g. and pentode valves vary as the impedance?

A.: The impedance has a bearing on the mutual conductance, but it is wrong to say that the mutual conductance varies as the impedance, m.c., can be measured in mhos. by dividing the amplification factor by the impedance and multiplying by a million. It can be seen from this that m.c. will be constant for a given amplification factor and impedance only. plification factor and impedance only. Anything that tends to diminish the impedance or raise the amplification factor benance of raise the amplification factor will better the m.c. Conversely, anything that increases the impedance or diminishes the amplification factor will have the opposite effect.

turn influences the mu. The account coulst ions are made from the plate current only. Mu, of course, denotes amplification factor, and is derived from the curve Six is somewhat similar to the circumstance of the curve of the c of the valve by comparing changing current brought about by change in anode voltage, divided by change in grid voltage responsible for the same variation

The tions are beyond the scope of Q. and A.: If you increase the impedance of a given valve, you will diminish the amplification factor, and the sa high amplification factor, and because it has a high amplification factor, and because it has a high amplification factor, and because it has a high amplification factor. A valve has a high amplification factor, not because it has a high amplification factor, and because it has a high amplification factor, and because it has a high amplification factor, and because it has a high amplification factor. A valve has a high amplification factor, and because it has a high amplification factor. A valve has a high amplification factor, and because it has a high amplification factor. A valve has a high amplification factor, and because it has a high amplification factor. A valve has a high amplification factor, and because it has a high amplification factor, and because it has a high amplification factor, and because it has a high amplification factor. A valve has a high amplification factor, and because it has a high amplification factor. A valve has a high amplification factor, and because it has a high amplification factor. A valve has a high amplification factor, and because of the arrangement of the manner described in the "R.R." for August 14.

[Miramar] What can I do to stop the noise from a lighting has a high amplification factor. A valve has a high amplification facto

and use a resistance of regular defining rate.

2. What voltage would be required to charge (a) a 50-volt accumulator, (b) 100-volt accumulator at an eight of an amp?

amp?
A.: The drop through the valve would be about 15 volts, consequently the secondary must be capable of delivering 65.
(b) The drop will be from 20 to 25 volts, hence you will require 120-125 volts, from the secondary. The book-up is the same in all three cases, and the rate of charging for the "B" accumulator will be about 100 mamps.

J.C. (Dunedin): Yes, to your first two questions, and no to the third.

GREEN GRASS (Pelorous Sounds): Would three "B" batteries give me better reception than two?—We think

cuit which you are using, which, by the way, contravenes the P. and T. Department regulations.

As we shall be pubment regulations. lishing full details of this set in the near in the plate current.

3. If reducing the ht. on the extra grid future, we advise you to use your parts increases the impedance, and therefore for it.

OWL (Greymouth): Volume from the "Kestrel Three" is very weak. Tuning is very sharp and the set oscillates when the differential condenser is earth-

A.: There is a fault in the set somewhere. Make the following tests: See that the moving vanes of all three condensers are actually connected with earth, that the fixed vanes cannot touch the moving or earth, that a condenser is not being shorted out through its proximity to shielding. Bring the aerial in to the fixed plates of the detector condenser and see if there is any improvement in either volume or operation. If there is, then there is definitely a fault in the r.f. stages. Have you remembered that the cap of the s.g. valve connects with the plate? Are getting screen voltage to the r.f. valve?

2. Is it in order for a spark to occur when I connect "B--"? It occurs only once after an interval.

A.: This indicates that the condensers are charging and it is quite in order.

DX15NW: Is it necessary to earth the dead end of a Beverage aerial to a resistance, and why?

A.: We said so, and gave the reason in the article on the Beverage aerial published in the "R.R." on October 3, 1930.

2. Is fencing wire as good as the stan-dard copper aerial wire?

A.: For the Beverage aerial, yes.

A RIKI (Blenheim): Your present aer-ial is the better.

Ferranti approached the Eliminator question firstly from the "SAFETY" When working off the mains with all the power of the A chain is no stronger generating station behind them. Safety is essential. A defective component in a mains unit may prove than its weakest link. disastrous.

All Ferranti mains components are built for mains work with an AMPLE. MARGIN OF SAFETY, by engineers who understand mains work and what Ferranti has built 1,000,000-volt transformers and 800,000-volt it involves. condensers.

You will readily understand the vital importance of SAFETY in apparatus of this class, and the same skill in design, the same manufacturing facilities, and the same relative margin to safety is available to you for your Eliminator if you use Ferranti components.

Therefore, specify Ferranti and ensure Safety.

MAINS TRANSFORMERS CHOKES OUTPUT TRANSFORMERS CONDENSERS RESISTANCES **ELECTRO-DYNAMIC** SPEAKERS

NEW ZEALAND AGENTS:

arthur D. Riley auckland wellington