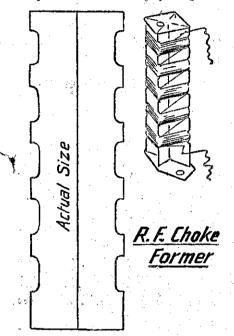
DYNAMIC (Waitomo): What do you recommend as a good system to build up my set so that I could add another stage later?

A.: See the differential series now running.

2. Should a three-valve all-wave set be capable of all stations on the loudspeaker and shortwave?


A.: Certainly not; you will be lucky to get more than the main New Zealand stations on the speaker. 3. Is the Blue Spot cone a good speak-

A.: Yes. A laboratory report has already appeared on it.

Winding Chokes

CELLULOID formers for radiofrequency chokes have previously been described in the "Radio Record." but slight alterations have been made in the dimensions, and as this type of broadcast choke has proved itself highly efficient, a brief description is given here.

Stout celluloid should be used, and may be marked out by placing over

the printed diagram, scratching the lines with a sharp steel point or strong If the scratching is deep, much of the shape may be broken out of the sheet by bending the celluloid. Two pieces the size shown are required for each choke. One of these is then divided down the centre and one piece attached to each side of the full piece with celluloid cement.

End pieces are then put on, larger than required, and when all is set, they can be trimmed with scissors. A hole in one of the angles at each end will allow the insertion of a meccano spindle for winding, otherwise the winding may easily be done by hand. One thousand turns of 36 or 38 enamelled wire is put on, 200 turns in each set of notches. The ends are passed through two holes and fastened with cement, or holes may be drilled for the insertion of bolts to act as terminals. Two holes in the base provide for screwing to the baseboard.

The direct current resistance of these chokes is 40 ohms with 36 wire and 63 ohms with 38, so with only a few mils passing the drop is less than one volt.

Constructional Data for Short-Wave Coils

AS numerous inquiries for short-wave coil specifications reach us we have prepared the following table of various combinations. A slight departure from specifications in either coil or condenser should not affect efficiency greatly, but it will slightly alter tuning:-

Valve Base. Tuning					1
Band, Secondary.	Wire.	20 A	Tickler.	Wire.	
19-25 7	24 d.c.c.		. 7	. 28 d.c.c.	
25-85 10	24 d.c.c.	*****	. 10	. 28 d.c.c.	
35-45 15	24 d.c.c.		. 15	. 28 d.e.c.	
45-64 22	24 d.c.c.		. 22#	28 d.c.c.	
62-110 40	24 d.c.c.		. 40*	28 d.c.c.	
*Tickler woun	d double	Town or	hand		

Va	lve Base.	.00015	Tuning	and .000	15 Reacti	on.	
Band.	Second	lary V	Vire.	Rea	ction.	W	ire.
	$6\frac{1}{2}$						
	$8\frac{1}{2}$						
	15						
	96						
	195						
Valve	e Base.	Tuning,	.00015.	Reaction	Resis	tance	
	Second						
9-16	$2^{\frac{1}{3}}$		26 dsc.		3½	. 36	dsc.
15-30	$5^{\frac{5}{2}}$		26 dsc.		$6\frac{7}{2}$	36	dse.
	81						

Valve Base.	Tuning,	.00025.	Reaction.	Resistance	controlled.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*Tubes	slipped	over valv	e base	
320-500	148 .	30) е, 🔒	65	36 dsc.
200-325*	80 .	30	е	30	36 dsc.
50-110	$15\frac{1}{2}$	26	dsc	$14\frac{1}{2}$	36 dsc.
25-99		20	asc	. LU5	50 asc.

						esistance		
Band.	″ S∈	econdar	y. W	ire.	Ti	ckler.	° Wi	re.
16-45		33		24 e.**		41	. 30	e.
40-90		134 .		24 e.		7	30	e.
250-540						33	34	e.
				_	_ `.			

Tube 3in, long slipped over valve to take winding. **All enamelled wiring spaced by own diameter.

Diameter,	thin. Tuning, .0001.	Reaction, .00035.
Band. Primary.	Wire. Secondary.	Wire. Tickler. Wire.
		18 dsc 4 30 dsc.
		20 dsc 4 30 dsc.
		24 dsc 8 30 dsc.
		26 dsc 15 30 dsc.
56-100 12	30 dsc 45	30 dsc 24 30 dsc.

]	Diameter,	$1\frac{1}{2}$ in.	Tuning	, .00)015. Res	ection,	.0002	25.
Band	. Sec	ondary	. Wire	e.	Ti	ckler.	٠. ٠	Wire.
						5		26 e.
29-58	*****	12	20	e.		9		26 e.
54-110		22	, 20	e.		15		26 e
						24		26 e.
220 - 350)	115	30	e.		12 .		34 e.
300-550)	195	32	e.		50		36 e

Diam	eter, 1	in. Co	ndenser, .	00015. Rea	ction,	0035.
Band.	Se	condary.	Wire.	Tickle	er.	Wire.
			22 e.	$\dots 5\frac{1}{2}$		34 d.c.c.
			22 е.	51		34 d.c.c.
			24 e.	91		
100-220		50	24 e.	15}		34 d.c.c.

	Dian	aeter	, 2in.	Tunir	ıg, .00012	5.	React	ion, .(00015.	•
Band.	Pr	imar	у	Wire.	Secondar	y.	Wire.	Tie	kler.	Wire.
					4 .					
					7 .					
					14 .					
64-115	· • • • •	24	•••••	26 e.	$\dots 24$.		16 e	6		26 dss.

and the second second	Former.				Ret				
Band.	Seconda	ıry.	Wire		Tiel	cler		Wir	e.
15-80	3 .		18	e.	 	4	 	22	e.
	6 .								
	11 .								
	20 .								

·	Diameter,	, 3111. I	unıng,	OTOU.	Reactio	n, .00025.	
Band.	Primary	wir.	e. Sec	ondary.	Wire.	Tickler.	Wire.
15-35	7 .	26	e	. 3	. 24 e	3	28 dsc
30-70	7 .	26	е. ,,,	. 9	24 e	. 4	28 dse
60-130	7 .	26	e	. 19	. 24 е	6,	30 dsc

A Short-wave Choke

HERE is a description of a good shortwave radio-frequency choke. It is lin, in diameter, wound with 150 turns of 40 s.w.g. double silk-covered (or enamelled) wire, unspaced, occupying I 1-5in. length. A piece of glass

tubing 2in. long is a convenient former. A piece of 24 wire is twisted round each end, and to this is soldered the 40 gauge. The one or two ends of the 24 will serve as leads.

Exploring Space

With Infra-Red Rays

A CCORDING to an eminent American radio engineer, recent research in connection with infra-red radiation and high frequency radio waves has indicated that communication with the various planets is theoretically possible. Ordinary radio waves cannot be employed for this purpose, as the ionised air (the Kenelly-Heaviside layer) in the upper atmosphere reflects them back to the earth.

Radio waves only a few inches long can now be generated, and these easily penetrate the Kenelly-Heaviside layer. The infra-red rays can also penetrate the atmosphere of the earth and other planets without scattering. The receiving apparatus for infra-red rays consists principally of a sensitive cell, so sensitive, in fact, that a high-powered searchlight operating on the moon could be recorded on the earth.

SO effective is the potentiometer control of grid bias in the detector of a short-wave set that it is now usually regarded as a necessary modification of such a circuit.

The Add-A-Phone, The Wonderful ADD-A-PHONE

His Majesty The King's speech -Prime Minister's speech-All great and stirring events are given to the world by Short-Wave.

The ADD-A-PHONE them up and puts them through your set.

Or works independently— WONDER -- DELIGHT .-SIMPLICITY

The N.Z. Short-Wave Listeners' Club recognise the world's great trend to short-wave.

Add an Add-A-Phone to your outfit and join the club and listen in to the world.

MACK'S RADIO SERVICE

76-77 Kent Terrace, Wellington. 'Phone 23-448.