with the negatives (either terminal) of each of the 2 and 6 mfd, condensers (two mfd. condensers arranged in parallel). Having completed the wirbias is to be provided as a separate tap. It is unnecessary in most cases). From a point in this line the wire runs to the 1 mfd. condenser.

Now return and pick up the two leads from the power windings. These go to the two free terminals of the buffer condensers and then to the rectifying valves. In the case of the Raytheon valve (shown in lay-out diagram) these two wires go to the filament terminals of the valve socket. In the case of the 280 full-wave filament rectifier they go to P and G. The filament wiring for the full-wave valve goes directly to the F terminals, and one of these becomes a common positive.

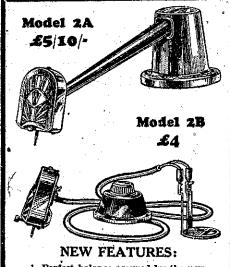
Returning to the Raytheon valve, the P terminal is connected first with the filter choke and this with the free terminal of the big 2 mfd. condenser. The common terminal of the chokes is then connected with the free terminal of the smaller 2 mfd. condenser. A lead from this wire is marked "Bu, or 220" and taken out where the panel will be. The remaining side of the choke now becomes the common positive wire from which others will be broken down. Connect this with the free terminal of the 6 mfd. condenser and carry the end (marked B+) to where the panel will eventually be placed.

connected, and this will become B-. If or D. This completes the base lay-out, uncompleted box, "C" bias is not required for purposes It now remains to wire the panel. other than the amplifier, connect "B" negative wire to this ing of the condensers, carry this lead negative. If, however, separate outside the box and label it C— (if grid bias is required a resistance of "Ducoed" 3-ply timber or any bias is to be provided as a separate 400 chart and the condensers of "Ducoed" 3-ply timber or any them, such that the moving arm may be conveniently handy.

The Distribution Panel.

400 ohms must be connected between other insulating substance that might The writer

Photograph 2.—Back view of power pack, showing condensers (left) transformer and chokes (right), with bias resister condensers in foreground.


it in. The moving arm is "B" nega such as is used in the construction of tive. terminals of the two .5 condensers must variable resistances (one 400 ohm for to the cathode of the 227.

either short out the resistance or put found a piece of carpenter's asbestos A lead from each of the free light out-dwellings, quite suitable. Four with a long lead to be carried out to where the panel is bias and three 0-5 megohin) are to next two terminals are connected to be placed, and marked R and D, cor- be mounted on this panel and their responding in diagram 2 to R. and R2. spacing is left to the constructor ing 5 volts (or whatever the power Place a fixed resistance of 10,000 ohms Along the bottom drill a dozen holes values required) and marked A C 5. The common — terminals of the two where shown, connecting one side to and mount the terminals. This board the next two marked A C 2.5 to the 5 and the 1 mfd. condensers will be B— and the other to be marked B + 2 will now be mounted as one side of the corresponding winding of the trans-

Connect the wire marked Bu or 220 to the terminal third from the end away from the transformer. Label this "B + unvariable," followed by whatever voltage the transformer may be delivering. From the common positive (B+ or +) run a wire along the top of the panel, dropping leads to one side of each of the variable resistances, with the exception of the 400 ohm resistance. Connect C— to one side of the bias resister and this to the first terminal on the board labelling it "C--" Connect B-- to the other side of this and to the second terminal, labelling this "B--" It is unfortunate that the highest B+ and B- come so close together, but in the case of the original amplifier it was almost impossible to do otherwise, owing to the shortness of the AC leads from the transformer.

Connect the fourth terminal, marking it A, to the first resistance and then to No. 1 of the small condensers. The second variable resistance is connected to the next free ferminal marked R and to the small 1 mfd, condenser No. 2. The final resistance is connected to the next terminal, labelling it D, and to the fixed resistance.

The next terminal is connected to the A C filament winding delivervalues required) and marked AC5,

- 1. Perfect balance assured by the new Webster's winerting stylus bearing.
 2. No counterbalancing or springs.
 3. Shock-absorbing arm bearing with pivot at base—an exclusive Webster development.
 4. Unique method of turning head with arm to insert playing needle.
 5. Volume control in base—compact and easy to instal.
 6. Base is weighted so that it can be screwed in place or merely set in place.

- nace,
 7. All bearings completely free from
 play or chatter.
 8. Cord completely concealed.
 9. Finished in attractive, soft-lustre
 statuary bronze.

HEAR the NEW

Better by far-and by tar the best.

In this new Webster Pick-up the Webster engineers have introduced many new refinements in both appearance and design, which will greatly enhance its fidelity of tone reproduction, and make its position of leadership still more secure.

N.Z. Factory Representatives; SPEDDING; LIMITED. Commerce Buildings, P.O. Box 462, Anckland; P.O. Box 1581, Wellington; P.O. Box 922, Christchurch; P.O. Box 516, Dunedln,

Using two 227 valves and two 256 valves in push-pull; two 281 valves in rectifier. Speci-re designed by Webster engineers to

Volume Unconfineá

for carnivals sports, athletic meetings dance halls amusement parks and other public places.

This amplifier is suitable for installation in theatres having a seating capacity of 600 to 1500 and gives perfect reproduction of gramophone records. Can be incorporated in gramophone cabinet and is capable of making an electric reproducing gramophone give tremendous volume of perfect music.

> Price £45 Without Valves