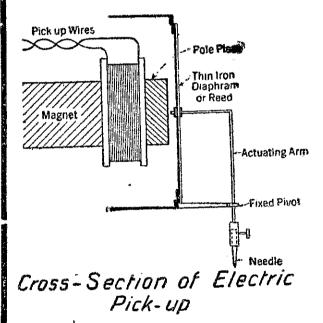
The Principle of Gramophone Pick-ups

early in 1926 states an excellent phonograph with your radio receiver. This was the first electric telephone, into the picture. So far, we have only article in "Radio Broadcast." Since This has required a few circuit kinks, then several dozen different types have which are new, but the fundamental been manufactured, and as many principle employed goes back to the articles have appeared covering their early stage of the telephone and the operation. Yet, at a recent public de- phonograph. Alexander Graham Bell of the complete electric telephone. As the monstration of a particular make in about 1875, discovered that when a one of the large New York stores, nine thin piece of magnetic metal was viout of ten people were amazed that brated in front of an electro-magnet, such a device was in existence, and, of currents were created in the windings course, knew much less of its work- of the magnet. These currents were ings. For the benefit of the uninitiat- exactly similar in their electrical vied, let it be here stated that an elec- bration to the mechanical vibration of trical pick-up unit is nothing more than the magnetic metal directly in front of an electrical sound box for your phono- the pole pieces of the magnet. Thus,


The name "pick-up" unit has been thin piece of iron, it would vibrate and

started to appear in radio circles suited for connecting your old type magnet similar to his voice vibration. Here is where the radio receiver comes when he talked directly against this

RLECTRICAL pick-up units first given to that particular arrangement create currents in the windings of the well from the modern loud speaker.

FEW people realise that the telephone receiver to-day is practically unchanged from Bell's original conception art developed, other more sensitive principles were used for the telephone transmitter or mouthpiece, but nothing has been found better for the receiver. And even now, the receiver, when used dinary telephone transmitter.

the phonograph a couple of years after signed as to be readily attached to disc the horn.

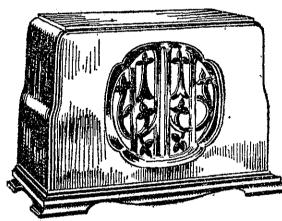
was made to travel over the impression in the wax cylinder as the disc moved to and fro under the influnce of the person's voice. Then, when it was desired to hear the record, the thin disc was placed at the end of a horn and the needle was made to travel over the same waving nath which it had previously cut. The wax groove forced the needle to and fro, which in turn actuated the diaphragm.

AN electrical pick-up is merely the combination of these two inventions. A phonograph needle must be attached to the pick-up device. This needle actuates a thin strip of iron mounted directly in front of the pole pieces of an electro-magnet. As the THE regulation of volume of tone has needle is forced back and forth by the waving nature of the grooves of the ideas as there are different electrical phonograph record, the thin iron diaphragm is forced to vibrate in unison in front of the electro-magnet. This which shunt out some of the electrical vibrating magnetic metal induces elec- currents generated in the pick-up unit. magnet whose vibrations are similar in to be reduced to an almost inaudible nature to those of the diaphragm, and whisper. in turn to the grooves in the record.

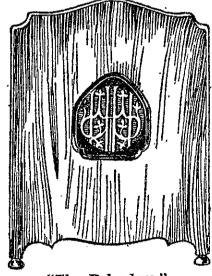
used the turn-table, motor, and record of the old phonograph. The electrical pick-up unit has taken the vibrations off the record, and has transformed them into electrical currents; now they are to be amplified by the radio set.

Only the Audio is used.

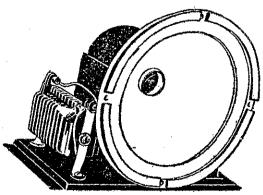
THESE currents are not radio currents at all. They are merely the as a transmitter, produces better tone amplified music and voice from the requality, but less volume than the or- cord. Hence, only the audio amplify ing end of the radio set is utilised, Now, Thomas Edison brought out and the pick-up unit must be so de-Bell's telephone. This was a device this audio amplifying section of the that took the minute vibrations of the radio receiver. The currents are then thin iron disc, and, instead of chang- amplified through the audio amplifier ing them into electrical impulses, re- and are reproduced though the loud corded them on a wax cylinder which speaker, just as the radio programmes was rotated when recordings were are amplified and reproduced after made. This was done by attaching they are detected by the detector tube. a sharp needle on to the centre of the One would guess from this that the end of pick-up units are attached in some way needle to the detector tube, at the beginning of the audio amplifier. Most of them are arranged to operate in the plate circuit of the detector, although one is arranged to work into the grid of the detector tube and thus gain the amplification of the detector tube.


A careful study of the constructional details of quite a number of different designs shows the necessity of some sort of damping on the vibrating piece of thin iron. Naturally, everything has a natural or inherent period of vibration. Just as a tightly stretched piano string will vibrate at a certain pitch when plucked with the finger, so will the thin iron reed in front of the pole pieces of the magnet tend to vibrate at some particular pitch whenever it is set in motion. If this were not damped or stopped in some way, the unit would rattle on certain notes, and blast and distort the music. This damping is accomplished by mounting pieces of soft rubber tightly between the iron reed or diaphragm, and the pole pieces. In the Amplion Revelaphone the entire vibrating iron reed is pivoted in sponge rubber. The reed is thus left free to vibrate between the pole pieces, but it is damped by the rubber mount! ing at its pivot. The Bosch Recreator also operates on the damping principle of a rubber pivot, rather than rubber between the pole pieces. The Baldwin Needlephone has a rubber damped pivot as well as damping rubber between the pole pieces.

Volume Control.


brought forth almost as many pick-up units. In general, these volume control boxes are variable resistances trical currents in the windings of the An adjustable knob enables the volume

The question of weight on a record Of course, these currents are ex- is indeed a serious problem. Records tremely weak, although very clear and as well as needles, wear out, and we excellent in tone quality. Yf we should are quite familiar with the fact that place a pair of headphones across the needles should be changed rather fraoutput of this electric pick-up unit, we quently. However, one is not accuswould hear some very fine music. The timed to think in terms of "record only problem that now remains is to wearing." Nevertheless, this is quite an amplify this sufficiently to be heard important factor, if the electrical pick-


"Magnavox" Dynamic (Moving Coil) Speakers

"The Beverley."

"The Belvedere."

in conjunction with a Gramophone Pick-up give results equal to the highest-priced Electric Gramophones. The Magnavox Company control the patents for the famous "Dynamic" Speaker which word they applied to this new type of sound reproducing instrument. Magnavox Speakers are a revelation in sound reproduction, and will carry as much volume as can be imposed by a Radio Set or through amplification. There is no distortion or rattle. Magnavox Dynamic Speakers created a sensation at the American Radio Convention this year, and the largest and best manufacturers are equipping their sets with Magnavox Dynamic Speakers. There is a type for every kind of electrical current. Complete speakers or units which can be placed into the present cabinet of your gramophone or speaker can be supplied as follows:

Magnavox Dynamic Speakers used

$_{0,\mathrm{C}}$	6 Volt D.C.	Current
D.7	110/220 D.C.	Current
D.8	6/12 Volt D.C.	Current
D.80	230 Volt A.C.	Current

Also complete Unit and Amplifier for 230 Volts A.C.

"Tie Magnewox Unit." Full Details from all Radio Dealers and Wholesalers or from the New Zealand Agents:

SPEDDING, LTD., Auckland. SPEDDING, LTD., Dominion Bldgs., Wellington. L. L. JONES, 214, Madras Street, Christchurch. E. H. CALDER, 42, Crawford Street, Dunedin.