Radio Frequency, Amplification and

ADIO amplification is obtained from two factors, the step-up in the valve, and the step-up in the r.f. transformer. In some circuits there

may be no step-up in the transformer, which will in such a case have a ratio of only 1 to 1, so that the total amplification of a stage will then be only that of the valve, and this is the case in the tuned plate type of circuit.

of the valve must not be taken too literally as an indication of the amount just as in many other parts of a radio circuit, and by adjusting the position of amplification it will give in a prac- circuit. This compromise is rendered of tapping this condition can to some tical circuit, as in actual use the necessary on account of the damping extent be adjusted. amount is usually considerably below effect which is introduced into the cirthe theoretical value, and depends to cuit by the valve itself. If a resista great extent upon the circuit used, ance is shunted across a tuned circuit, more particularly that portion directly it has the effect of making the tuning connected to the plate of the valve.

WHEN signal voltage is applied across the grid and filament of a valve, variations are caused in the plate current, that is, in the B battery There are two impedances in the plate circuit, the impedance of the valve and the impedance of the external plate circuit. The fluctuating plate current develops voltages across the external impedance, and these voltages are transferred to the grid of the next valve either through a coupling condenser, which is the method thority has stated.

Selectivity

A Few Points on the Subject By Megohm

The theoretical amplification factor working against such perfection, so that when the damping introduced by the the usual compromise has to be made, valve is equal to that of the external unselective and this is what the presence of the valve tends to cause, for it is the equivalent of a shunted resistance across the circuit. If the external impedance is high, amplification is high but selectivity is poor, so that a separate means of obtaining selectivity is necessary, or else a compromise must be made between amplification and selectivity that in the case of the tuned plate circuit, does not give the most desirable result.

SOLUTION of this difficulty lies circuit. in the adoption of the r.f. transadopted in the tuned plate circuit, or former with primary and secondary however, tuned for 350 metres, the best through a r.f. transformer coupling, windings, whereby it is possible to which latter method should give some sacrifice a certain amount of amplifica-In an efficient Browning tion from the valve by decreasing the Drake receiver this step-up may be as external impedance of the circuit, metres on either side of the 350 to rehigh as 20 to 1—so an American au- thereby gaining selectivity, and then duce the current in the circuit to onemore than make up for this sacrifice half of its own best value. Thus the To obtain the full theoretical ampli- by the step-up in amplification gained fication of the valve, the external im- from the transformer, at the same pedance must be very high, and the time reducing the damping effect of the voltage is then all developed across it, valve by, in some cases, tapping it and very little in the valve itself, but across a portion of the circuit only, same intensity, whilst with a sharply attainment of this ideal is practically whereby the coupling effect is propor-

impossible, as there are other factors tionately reduced. The best condition

Effect of Resistance.

ONE of the effects of resistance in r.f. circuits is usually to flatten the tuning. This is surprisingly shown if measurements are taken of the current passing through the circuit at resonance point (that is, when tuned for the best reception of a given wave) and at points a little off the tuning point. In one case where the tuning was on 350 metres, with little resistance in the circuit, an alteration of the tuning 2 metres above or below the 350 reduced the current in the circuit to one-half its best value; this shows how sharp was the tuning in the low-resistance r.f.

In a higher resistance r.f. circuit, current was only about one-half the best value in the above case, and furthermore it required a de-tuning of 30 tuning was "flatter," and this illustrates why, with a flat-tuned circuit, wave-lengths near the desired wavelength come in with very nearly the tuned circuit, if another wave-length is the least amount off the desired value, its intensity of reception is reduced to a small fraction of that of the desired wave-length.

Aperiodic and Tuned Transformers.

SOME types of radio-frequency transformers employ "aperiodic" coupling, which does away with the necessity for tuning each stage, but one great advantage of employing tuned circuits is that selectivity is thereby increased. and the wanted signals therefore amplified to a much greater extent than the unwanted ones, or atmospheric disturbances. Some modern types of r.f. amplifier, employing three stages, can give an amplification of 1000 or more at certain definite wavelengths, and of 400 to 800 at any wavelength over a certain range. But it must be remembered that the factors in favour of amplification are to a great extent against selectivity.

Laboratory measurements of two three-stage transformer-coupled r.f. A amplifiers supposed to be identical, and manufactured from the same specifications, have shown one to give less than one-third the amplification given by the other, which goes to show that not everything is yet known about this class of amplification.

quency, on either side of the carrier. Jensen and Magnavox types.

Thus, the carrier wave of a 300-metra station has a frequency of 1,000,000 cycles per second. Speech may cause variable side frequencies between about 990,000 and 1,010,000 cycles. To receive broadcast transmission the resonance curve must be sufficiently flat to cover the band 10.000 cycles either side of the carrier without noticeable distortion. This is the reason why a highly selective receiver may cause distortion or light-note loss by cutting off or unduly weakening amplification of the side-

Using Reaction.

WHEN we work up a weak and distant signal by applying a good deal of reaction we may, without always realising it, render the set so selective by making good the damping losses that a certain amount of cutting of the outer sidebands takes place, with considerable detriment to the quality: too little in such circumstances is heard of the treble; speech sounds rumbly and music is drummy.

You will always get the best quality, particularly from the loudspeaker, when the set is working well within itself, that is, when signal strength could be made greater if it were de-

sired to do so.

The resistance of a wire to r.f. currents increases with the frequency, so that other things remaining equal, the aerial circuit resistance, and therefore the need for reaction, is greater on the short waves. The band of frequency variation due to modulation remains the same (10,000 cycles either side), and so the proportion of this to the whole frequency (which is much increased on short waves) is less, so that we can work nearer to oscillation point and obtain better amplification by reaction without serious distortion. Reaction is therefore more necessary. more effective, and less distorting on short waves.

Stability.

NOTHING has yet been said regarding stability, which is indispensible in any r.f. circuit, and in order to ensure it, considerable amplification has often to be sacrificed.

The Double-Roll Speaker.

THIS speaker, built to the dimensions given, is the equivalent of a 26inch cone. The paper used for the diaphragm should be rather heavier than that used for the cover of the Government telephone directory, which forms a handy standard of comparison. The omniphone unit for this speaker is also stocked by the Rodger Importing Company, 159 Manchester Street. Christchurch, at 30s.

Field Current for Coil-Driven Speakers.

PARAGRAPH in "Radio Broadcast" states that for the excitation of coil-driven speaker magnets requiring six volts, this can be adequately supplied by many of the popular trickle chargers with a Tube A block connected across its output to eliminate hum. This combination, it is state ed, is altogether satisfactory, not a THE wave-length of a broadcasting trace of a.c. hum being perceptible in is subject to "side band" fluctua- the speaker, which functions at full tions, between the limits of audio-fre-efficiency, referring specially to the

osram valves

OSRAM Valves, recognised as the leading English valves, are now procurable in New Zealand.

Dealers will particularly be interested in our Special Offer.

For details of Latest Types and Prices write to:

Thomas Ballinger and Co., Ltd. WELLINGTON. **58-62 VICTORIA STREET,**

"Where the Quality Goods are Sold."