o թուցնունան արարդարան արարդարան արարդան արա

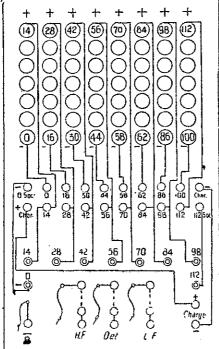
Mainly about Construction

BY "MEGOHM"

AN A BATTERY CHARGER CAN BE USED

added to the I12-volt B accumulator that row are connected to the respective posi-has already been described in this tive and negative ends of rows of tubes. column. Its addition does not entail An extra charging terminal is now any removing of tubes or plates in the placed above the one already supplied case of a battery already constructed. The left-hand cups are connected to and in working order. The device is a very efficient and reliable switching arrangement whereby the battery can be and negative charging terminal. The charged by any A battery charger giving a voltage of about 20 or 24. The object is to do away with the use of a chemical rectifier, and utilise the quicker and more reliable double-wave valve charger, of which a number of good makes are available. This will encourage constructors and listeners to get the one charger, and let it be a good one; and one that will answer for both batteries. It should also be mentioned here that this attachment can be used in conmection with any type of B battery, and has been applied to a bought bat tery of three units with uninterrupted success. The idea has been in use for a long period, has stood the test time, and can be recommended. The principle made use of is that of

charging in parallel and discharging in series, the change from one connec-tion to the other being made by the substitution of the "series" connector, and substitution of the "parallel," or charging connector. In order to give absolutely reliable contact that need never go wrong, small mercury cups are used, and the construction of these as directed will be quite a simple matter. These cups, twenty in number, are placed through two rows of holes drilled in a piece of \$\frac{1}{2}\text{in. ebonite \$6\frac{1}{2}\text{ x \$1\frac{1}{2}\$ inches, and which takes the place of the flat strip of wood above the front panel of the


Wiring Diagram.

As the wiring diagram is now ready, it will be explained first, and should be compared with the original diagram published. At the top is shown the battery of tubes, with a lead coming from the front and back tube of each row. A difference is now to be noted, for whereas a branch was originally taken from each positive tap to connect to the front end of the next row of tubes, this short connection is now to he taken away, leaving the negatives unconnected. A wire from the corre-sponding mercury cup will later be soldered to the tag projecting above these negative plates.

The two rows of mercury cups are shown below the tubes, the back row all negative and the front row all positive The positive end of each tube row is already connected to the tapping sockets on front panel, and these sockets in the paper direct upon the ebonite.

Space does not permit of the derespondingly numbered mercury cup in the front row. It should be noted that so it will be concluded next week.

This is a small device that can be fall cups except the two end ones of each The left-hand cups are connected to O socket and positive charging terminal and right-hand pair to 112-volt socket

in the connectors that only closes the circuit from the cups when charging is arranged for. In order to allow more room for connections behind the top of the front panel, it should be put down to the bottom of the side pieces when replacing, and the inch space at top filled up with a strip of wood. A narrow strip can be screwed on bottom end of side pieces, front flush with bottom edge of panel, and holes drilled to take plugs when not in use.

The Mercury Cup Panel.

This, as already mentioned, is a piece of lin. ebouite 6½ by 1½ inches. Next week a full size templet of this will be given so that positions of holes to be drilled can be punched through

ANSWERS TO CORRESPONDENTS

"Megolim" has had a number of appreciative letters from readers who have obtained improved reception by carrying out hints given in answer to taken the trouble to write in and re-

port are thanked accordingly. Chemical Rectifier Tips.

An Auckland reader writes an appreciation of the test-tube type of B battery, having had a 72-volt in use for a long time, charging with a chemical rectifier. He recommends the covering of the upper half of the aluminium electrode with rubber tape, tightly bound on to exclude all chemical action, and also serving the purpose of reducing the area of plate surface. This is an idea that is frequently used in chemical rectifiers, and is easily tried. Its chief object is to prevent corrosion of the aluminium near the surface of the liquid. When charging a test-tube battery in series the current required

95 WILLIS STREET

Loop Aerials.

W.D. (Helensville),-Presumably you require a loop for experiment. It will only give about one-sixth the volume of finer than 18's, spaced a little over one-eighth inch apart. Two feet for each side would be suitable, and could have ten turns of wire. Make a cross with three arms equal and one longer to go in a stand. Drill a hole near end of each arm and put short dowels through. Notch dowels for wires. Shellac the whole frame before putting the wire

Estimating Wave-length on Dials.

(Alexandra) .- The whistles you hear around 29 and 90 degrees on your wave-length dial are probably the carrier waves of 2UE, 297 metres, 250 watts, Sydney; or 2KY, 280 metres, 1500 watts, Sydney. You should be able to get these stations easily on favourable uights with your five-valve Browning-Drake, and both wet batteries. Probably it is only experience in tuning-in that you lack, and this will soon be acquired with practice. It is difficult to give the range of the set without some idea as to its efficiency is very small, so that it is always safe to keep the size of electrodes down, and also to keep them as far apart as possible. One inch has been stated as the minimum distance apart.

difficult to give the range of the set without some idea as to its efficiency or the name of maker. It should be able to reach nearly 10,000 miles on odd favourable occasions if it is in effi-

CROSLEY RADIO BETTER—COSTS LESS

THE RFL 5 VALVE MODEL and the 5 and 6 valve single control shielded models are unexcelled for distance getting, quality of tone, and low cost.

Arrange for a demonstration by the Wellington Distributors:

G. G. MACQUARRIE,

RADIO DEALERS.

'Phone 45--865

WELLINGTON.

CHARGING THE 112-VOLT ACCUMULATOR | Cient order. The four-valve Browning-prake just described in this column for constructors has reached WBBM (Chicago), 7000 miles; KFKX (Hastings, Nebraska), 6500 miles; three Japanese stations, 5000 miles, and a good number of American Pacific coast stations. Familiarity with positions of known stations on the dials enables one to estimate approximately the wave-length of a newly-found station from its relative position to the nearest known station on either side. But there is a method by which a given wave-length may be found on the dial to a degree. Take a piece of graph paper and along the bottom mark off 200 at the left, 800 two inches to the right, 400 and 500 each two inches apart to represent metres. Every tenth of an inch will equal five metres. Now up the side we want the degrees, usually up to 100, commencing at 0 at the bottom. At every half-inch mark 10, 20, 30, up to the total number on dial. Now tune in all the stations you can, one by one, and with a list of wave-lengths, place a dot on the graph to represent each station, the position being found by reckoning the degrees on dial upwards and number of metres where the control of the co wave-length reckoned across. Where these two readings intersect a dot is placed. When a dozen or so stations have been marked, well spaced across the graph, the dots are joined by a line running through each, which will probably give a slightly curved line running diagonally upwards to the right. The line can be extended in the same direction at either end for a short distance to the edge of graph. Now, suppose you wish to find a station you know to be transmitting on 350 metres, look for 350 on the graph, and following this line upwards until the curved line is met, the point of contact gives the number of degrees at which that particular wave-length may be found. Of course a little searching a degree or two on either side may have to be done, and the other dial must be brought into resonance in the usual way. The degree readings may be taken from either dial, but are best taken from the resonance or secondary tuner, because that one is the least likely to be altered. Any alteration in the arrangement of the circuit may upset the accuracy of the graph and ne-cessitate making another. The graph will also show the approximate wave-length of a station when the dial read-

ing has been obtained.

An interesting letter has been received from an enthusiast in the Feikling district, but is rather lengthy to deal with at present

Crystal Improvement.

"Inquirer" know how to increase volume on an inexpensive crystal set he has constructed, and which receives 2YA, 1YA, and 3YA, the two last-named faintly. Your diagram shows a slider tuning arrangement, which is quite a good method. Wire on coil should be 20's or 22's gauge, space wound. Look to earth connection, which is important. Possibly a galena crystal would give better results than the hertzite now in use. (2) The single pole double throw switch in the aerial circuit does not take the place of an arrester, which must be provided in addition.

Crystal Amplification.

C.H.W. (Wellington) asks for par-ticulars of resistance-coupled amplifier to add to crystal set. Resistance coupinquiries. It is always interesting to your good outside aerial. A loop for hear the result of suggestions that have broadcast reception should contain about 70 feet of wire, preferably not immediately after a crystal detector, as the principle depends upon the anode potential of a preceding valve. Transformer coupling is the most satisfactory for crystal amplification, and if good components are used, very fine results are obtained with one or two stages. There is a circuit known as the Sharman circuit that utilises capacity coupling between crystal and valve or an unusual principle, and is said to give good results on long-distance work.

B Accumulator.

"Radio" (Auckland).-The holes in battery plates should be kept small, about one-sixteenth inch or a shade arger only, so that the paste will not tend to come through. (2) About forty holes in each should be sufficient. (3) If new paste is used, lead peroxide is

SAFEGUARD YOUR **ACCUMULATORS**

THE ACE 2 AMP CHARGER (Tungar Bulb), CHARGES BOTH A AND B BATTERIES.

IMPOSSIBLE TO DAMAGE YOUR ACCUMULATORS.

Manufactured and Guaranteed by JOHNS, LTD.,

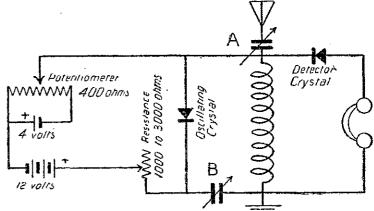
CHANCERY STREET, AUCKLAND. Obtainable at all Dealers-or direct. P.S. Fuller's New 20-volt B Accumulators 27/- each.

THE BEST BY TEST

THE OSCILLATING CRYSTAL

AS A HIGH-FREQUENCY AMPLIFIER

Oscillating crystals have not been lused is one ear-piece much experimented with by amateurs, owing, no doubt, to the case with which a valve circuit can be put together to replace the crystal. There is, however, much scope for interesting and useful experiment in the direction of increasing the sensitivity and thus the range, of a crystal detector. Experiments already conducted have shown surprising results in comparison with those obtained with the ordinary crystal circuit. As H.F. amplifier as much as 15 to amplification has been obtained, but as an I.F. amplifier an increase of volume about 3 to 1 is all that may be expected.


The oscillating circuit can be added

to an ordinary crystal set. The extra components required will be a variable condenser, capacity according to the one already in use, 400 olm potentiometer, resistance, 4-volt and 12-volt flash-lamp battery, and a good specimen of zincite crystal. The potentionneter must be a smooth-working one, as any break will throw the crystal off oscillation. The resistohms, and for this purpose the secondary winding of an I_AP. transformer may be used. A variable resistance can be used with some ad-

Zincite is the only crystal used to

winding of a 4000 olim pair of 'phones. It should be noted that the zincite is connected to the positive end of the battery. For the detector a perikon combination is particularly suited, but any stable crystal of high resistance can be used, but one of low resistance, such as hertzite, would be liable to cause howling. Condenser A .0005, conhowling. Conde denser B .00035.

Operation. The method of operation is somewhat as follows: The cat's-whisker is taken off the zincite and a station tuned in on the detector crystal, condenser B, at zero. Condenser B is then turned to full capacity, whilst the surface of the zincite is explored for a sensitive spot, the potentiometer being set about half-way over, and cat's whisker contact light. When os-cillation is obtained a rushing sound will be heard in the phones, and a moist finger placed on the aerial ter-minal will give clicks. The oscillation must be allowed to steady down before tuning is proceeded with. Care must be taken not to jar the set in any way. The condenser I is then turned until the whistle of a carrier wave is heard, and tuning is carried out with the two condensers and potentionneter, and, provided that the funing coil is of suitable value, re-ception should be satisfactory. A lit-

able sample has a deep, dull-red, glassy appearance, and if not this colour all over, there must be a very substantial patch of it, or trying to obtain oscillation will be a mere waste of time. A crystal having the appearance of a piece of coke will be useless. Zincite is a somewhat brittle crystal, and on that account should not be too and of that account should not be too tightly clamped in the cup. The usual cat's-whisker must be replaced by a spiral of No. 30 steel wire, or a cop-per spiral with an ordinary pin at the end. The point of cat's-whisker must not be too sharp, and may be blunted slightly on glass-paper. The oscillator should rest upon a piece of felt or spongy rubber, in order to deaden all outside mechanical vibration, as this is an important factor towards success. The resistance already mentioned must not on any account be less than 1000 ohms, as it must exceed the resistance of the cat's-whisker contact, which is usually 800 to 850 chms. Another trial resistance that may be

give oscillations, and of this a good tle practice will be required to regu-specimen must be obtained. A suit-late the battery potential, so that oscillations are just ceasing when the carrier wave is tuned in.

Improving the Crystal.

A good specimen of zincite will give oscillations, but it can be improved by the process of fusing in an electric arc in contact with manganese dioxide. An amateur may carry out the equivalent of this process on an ordinary fire by placing the crystal in a tin lid with a little manganese dioxide. Place this in a hot fire until the crystal shows a white heat, when it may be taken from the fire and allowed to cool

gradually. The above notes have been compiled from several reliable sources, and are

for the positive and litharge or spongy lead for the negative. These are sep-arately made into a stiff paste with sulpluric acid, diluted to usual battery strength. The paste is slow in drying, plates must not be put into battery for use until thoroughly dry. Heavy pressure is used in placing the paste in factory-made accumulators. Forming these will take some time.

Crystal Amplification.

1'.W. (Parihouhou).—No. 6 of the "Record" shows how to couple an amplifier to crystal. If dry cells are to be used for filament heating, then two-volt valves are the most economical With an accumulator, four or six volt valves may be adopted. Two ordinary dry cells will run a two-volt valve. The B battery may be a dry one of 45, 60, or 90 volts. (2) When reading reports of long-distance crystal reception in America it must be remembered that the stations mentioned may have a power of 15,000 or 30,000 watts. Some splendid results are being achieved in New Zealand on DX crystal reception.

Neutrodyne Troubles. "Rarth Wire" (Balclutha).—If your five-valve neutrodyne squeals as you state, it is probably not properly neutralised. Carry out instructions given on neutralisation in last instalment of Browning-Drake article in No. 10 of the "Record." The usual midget variable condenser should be quite suitable for a neutraliser in your set. If after neutralising you are still troubled squealing, try reducing plate voltage on R.F. valves, and if this does not effect a cure, try a slight reduction on these filaments.

these filaments.

Crackling Noises in Set.

N.H.M. (North Otago).—You can test audio transformer windings for continuity with 'phones and a "dud" dry cell giving about a volt. If these are O.K., then the trouble is elsewhere. Replace the suspected condenser, and see there are no loose connections.

Make sure the crackle is not from B Make sure the crackle is not from B battery. If it is more than one of these matters, the best course would be, under the circumstances, to send it to the distributors for overhaul, as they suggest.

HOME CONSTRUCTORS

Write for our Illustrated Catalogue of Radio Parts. DE FOREST VALVES BRANDE'S 'PHONES IGRANIC COMPONENTS

RADION PANELLING

INTERNATIONAL RADIO CO., LTD., FORD BUILDINGS,